L8 ALGORITHM

Algorithm is a step wise solution of a problem or algorithm is advanced
preparation for executable program or code. For a particular (Single)
problem there may be multiple solutions are possible, so multiple
algorithms are possible for a single problem. If hundred peoples
individually are trying to solve a problem, they use different tricks,
technigues and ideas to solve a problem, so output will be same of all
peoples but definitely algorithms will be different. Mow the problem is

that which better algorithm among all algorithms is, it means all the
algorithm have to give test for better performance, in other words it is
also called complexity of algorithm.

How to calculate complexity (performance) of algorithm, complexity
can be find out by Asymptotic Notations,

Types of Asymptotic Notation.

1. Big oh notation.

2. Theta notation.

3. Big omega notation.
4. Litle oh notation,

5. Little omega notation.

Practically algorithm cannot compile and run, so always program have a
complexity and that complexity will be for equivalent algorithm.
Performance of algorithm or program can be find out by two parameters
one is running time(Time} and second one is runtime space(Memory in
RAM) both complexity measures at Run tme.

1.9 TYPES OF COMPLEXITY

There are two types of complexity.

1. Time complexity,
2. Space complexity.

1.9.1 TIME COMPLEXITY

Time complexity is a total time taken by the program for execution. In
this case program should produce fast output.

Cases:-Time complexity may be.

1. Best case:-required minimum time for solution.
2. Average case: - required average time for solution,
3. Worst case: - required maximum time for solution,

- WOrst case

I-’

~ -

| / ___ averagecase

l ’ -
/ P o~
-~ best case

?

In other words program should produce more output in very less
time.

1.9.1.1 Big oh notation (O)

Big oh notation is a techmque to find time complexity of algorithms, Big
oh notation is denoted by O (big O).

Big oh notation provide upper bound for function f(n) such that
f(n)<=c*g(n) for all ny>=n,

Here both [(n) and g(n) are polynomial function of n, where n is the size
of input, ¢ is a constant and ny, is the particular point where from n, if we
increase the value of n then the given equation f(n)<=c*g(n) will be truc
at any point.

Remember that complexity is not affected by any constant, f(n) is the
function of original problem and c¢*g(n) is upper bound for the

algorithm. Upper bound means at most time taken for execution, cannot
exceed c®gin) time for mnning algorithm .

Problem Statement: - If f{n) is polynomial function in terms of n and
gin) is upper bound for function fin) such that

fim)<=c*g(n) tor all ny==n then
f{m)=(Wg{n)) where ¢ is constant and ng>=n

Here fin) function can generated from algonthms or program step count
method and gin) is calculated from f{n) by constraint satsfactions of Big
Oh notation{ Remember that g(n) will be highest power of n in fin)).

Il we plot graph between Time (t) and input size n, here x axis represent
input (n} and v-axis represent Time (t).

R gim)

(tme)t
/ c*g(n)

fln)

A\
|

al n{input)

Complexity function fin) may be look like this.

Types of function:-

S5.NO | Function Name Function Value

l Constant function fin)=101{any conslant)

2 Linear function finj=n+5 or f(n)=2n+15

3 Quadratic function | f(n)=5 n’ +2n+4

4 Cubic function fin)=5n" +5n +2n+d

5 Exponential function | [in)=2"+5n" +5 n" +2n+4

] Logarithmic function | fin)=aTin'bHfi(n) (will see later)
Complexity looks like this.
Types of complexity:-

SN0 | Complexity Name Complexity Value
1 Constant complexity fin)=(N1)

2 Linear complexity mj=CHn)

3 Duadratic complexily I} {'Ju[nzj

4 Cubic complexity t'{n}l:{]-[n'q)

5 Exponential complexity | finj=042")

f Logarithmic complexity | fin)=(X{log(n)}

Which function having what complexity looks like this.

S.NO | Complexily Function Complexily
Yalue
| f(n)=1024 f(np=0(1)
b | [e w— LN Frm i —i e
3 fin)=5 n’ +2n+4 fin)=0(n")
4 fin)=8n" +5n"+2n+4 f(n)=0(n")
5 fin}=2"+5n" +5n" +2n+d [finp=0(2"
i fimp=2TinZ)+n T p=Clogin))

Which is the best complexity from above?

SNO n login) o ' 2

1 [0 [| 2

2 2 | 4 b d

3 4 2 16 64 16

4) 3 G4 512 256

5 16 4 256 4096 65536

For best complexity evaluation if we increase the input value then the
corresponding execution time nwst not be increase in big amount. If we
see from above table in log(n) column value increasing very slow bat in
2" column value increasing very fast in companson on input increasing
ratio. So finally log(n) is best complexity and 2° is worst complexity,

\
N

e

-

=
-

..Ii

T

n
nlagn
lagn

How to calculate complexity from function f{n)?

Examplel. What is the time complexity of given function?

finj=2n+12.

Solution:- Given fin)=2n+2

= 2n+2<=2n+2

=2 2n+2<=2n+n where n:>=2
e Intde=3n for all n==2
= f(n)==3n for all n>=2

= Compare with the standard Big oh notation eguation that is

= fin)<=c*g(n) for all n;>=n

= s0 here gin)=n, ¢=3 and n,;=2
= fin)=0O{gin)) where ¢=3 and n;=2
= fin)=(n) where ¢=3 and ng=2

Practical proof:-
N fin)=2n+2 cFgin)=3n fin)==c*g(n)
| fin)=4 3 4o=3 false

fin)=6 (il =6 Lrue

fin)=H 9 B<=0 Lrue

2
3
4 fin)=10 12 0<=12 true
We can check any value of n==2 it will produce true combination,

Examplel. What is the time complexity of given function?
fin)=n+4.
Solution:- Given (n)=n+4

= n+d<=n+d

= n+d<=p+n where n>=4

= neds=2n for all n>=4

= fin)}<=2n for all noe=4

= Compare with the siandard Big oh notation equation that s
= fin)<=c*g(n) for all ng==n

= s0 here g(n)=n, ¢=2 and ny=4

= fin)=0i{g(n)) where c=2 and n=4

= fin)J={n) where c=4 and n=4

Practical proof:-

N finj=n+4 | c¢*gnj=2n | finj<=c*gin)

| [(n}=5 2 §5<=3 false
2 fin)=6 4 fr—d) false
3 fin)=7 B Jo=h false
4 fin)=8) Be= true
5 fin)=9 10 9==10 true
b fin)=10 12 10<=12 true

Example3. What is the time complexity of given function?
fin)= 5n°+3n+d
Solution:- Given fin)=5n" +3n+4

= 50’ +3n+d<= 5n"+3In+d

= S0 +3n+de= St +3nen where ne=4

& Sn° +2n+d<= Sn’ +4n for all n>=4

= fip}s= 50" +0° for all n”>=4n

= f(n)<= 6n" for all n==4

= Compare with the standard Big oh notation eguation that 15
= fin)<=c*g(n) for all ng==n

= &0 here g(n)= n®, =6 and =4

= f(n)=0(g(n")) where c=6 and ny=4

= fin)=(in") where ¢=6 and ny=4

Exampled. What is the time complexity of given lunction?
fin)= n'+n +n+4
Solution:- Given (n)= ntentinid

fin)<= n'+n"+n+4

= fim)<= nlentenen for all ne=4
= finje=n'+n’ +2n for all n>—4
= fln== n’ +n°+n° forall n*>=2n

= fin)<=n"+2n" for all n>=2
= fl{n,'u::n1 on’ for all n'>=2n"
= fin)<=2n" for all n==2

= Compare with the standard Big oh notation equation that is
= fin)<=c*g(n) for all ny==n

= s0 here g(n)= n', =2 and ng=2
= fin)=0i{g(n)) where c=2 and n;=2
= fin)=(n") where c=2 and n,=2

Examples. What is the time complexity of given function?
fin}= 2"+ 0’ +n+n+d
Solution:-
Given fin)= 2"+n’+n"+n+d
finy<= 2"+n +n"+n+4

= finj<= 2"+n +n'+n+n for all n>=4
= fin)<= 2"+n"+n° +2n for all n>=4
= fin)s= 2n’ +n'4n” forall n==2n

= fin)<= 2"+n 20 for all n=2

= f{n)<= 2" nn for all n*>=2n°
= f(ny<= 2"+2n’ for all n>=2

= fin)<=2"+242" for all n'>=2"
= fin)==3*2" for all n==10

= Compare with the standard Big oh notation equation that is
= fin}<=c*p(n) for all ng==n

= &0 here gin)= 2%, ¢=3 and ng=10

= fin)=0i{g(n)) where =3 and ny=10

= fin)=(N2") where c=3 and ng— 10

Example6:-prove that: if fin)eO(n) then [fin)]’eOn)
Solution:- If fin)cO(n), let fin)=n+1=0(n)
So, [fin)]’=(n+1)"

Ifim]” <(n+1)n+1)

=n'+2n+1
<n’+2n+n, n=l
=n*+3n ,n=l
<n'+n’ 023
<2n" ,n=3
= |f(n)]’=Cin’) where ¢=2 and n=3
Example7. What is the time complexity of given function?
fin}= n"+d
Solution:- Given finj=n"+4

= 0 +de=nt 4
20t +d<=n"+n" where n>=4

e for all n==2
= fin)<=n" +n° for all n*>=4
= f{n)<= 2n’ for all n==2

= Compare with the standard Big oh notation equation that is

= fin)<—c"g(n) tor all ng=-n

= 50 here gin)= 111, c=2 and ng=2

= ﬂnj—ﬂl{g{nzjj where ¢=2 and ng=2
= fin)=(in") where ¢=2 and n,=2

Example8. What is the time complexity of given function?
fin)=n’ +8
Solution:- Given [(n)= n' 18

fin)e=n'+%

= fin)<= '+’ for all n*>=8§

10

38 Design &nd Anabysis Of flgorithms

= fin)<= 2n’ for all n==2

= Compare with the standard Big oh notation equation that is
= f(n)<=c®g(n) forall n>=n

= 50 here gin)= n', ¢=2 and fig=2

= fn)=0g(n)) where c=2 and ny=2

= fin)=0in") where ¢=2 and n,;=2

How to build function fin) from algorithm or program?

In any application most of the commaon operations are fetching values
and assign into some parameters, data transfer, data update, data scarch.
data delete, validations and calculations ctc, majorly above factors
affected execution tme of program. Remember any number of varables
only declared in our program will not affect execution ume until they are
not initialize because when variable initialize then variable occupied
memory in RAM.

Rules of step count method?

Element Step connt Complexity
Warable declaration [(1)
Warable inibalize | LN D]
Condition(if-else) 1 (1)

Loops i+l i)

Laoop inside Inop (n+1Wn+1] Oin)

11

Example

Element Slep count Complexily
int a.b,c;] Ol

a=110; 1 Ol

if{a<h) | Ol
for(i=1:i<=nii++) | n+1{ times condition checked) O(n)
for(i=1:i<=n:i++){ | (n+1)(n+1} times condition Qin’)

for(j=1;j==n;j++)} | checked)

Programl:-Sum of two numbers

voud main() --—---- ~-slep count
d
int a,b,c; ====ememaeasl}
A=10; eemesecmeea-- 1
b=20; e —— 1
B I
}
S0 [(n}=0+1+1+1
fin)=3
= fin)=011)

12

Program2:-Sum of two numbers using function

void add() -------- slep count

|
int a,b.c; ——-——--- 0

g=1lF e=emeeee———- =1

So finj=0+1+1+1
fin)=3
= =0 1)
Program3:-Snm of two numbers using function

int add() =====-—slap count

!

ST AL T 5 I L — i)
=l —e———— |

(| MO

B R L 1
meurn o-------—=---— I
}

S50 fin)=0+1+1+1+1

13

fin)=4

= fin)=0(1)
FProgramd:-print 1 to 10 using loop
YOI MAIn() ======= step count
i
nti; 0
i=1; 1
for{i==n)| ======mm=————— n+1
Nt d”, i+) n
b
5o fin)=0+1+n+1+n

fin)=2n+2

= in=0{n)
Program®:-sum of array elemenis
int addia,n) -------- step count
|
T 0
s={; I
formi=10<=n144)| ————n+1
s=5+0[i]; —=eesmmmmcanaaaaa. n

14

XN The Efficiency of Algorithm | GTU : Wister-12, Marks 7 |
The efficiency of algorithm can be specified uzing time efficiency and space
efficiency which is known as time complexity and space complexity
Time complexity of an algorithm means the amount of time taken by an algorithm to

Performing efficiency analysis is important for these following two reasons -
1. By compiting the time complexity we come b0 know whether algonithm s slow or
fask.

2. By computing the space complexity we can analyze whether an algorithm regquines
mane of kess space.
Concept of Frequency Count
The time complexity of an algorithm can be computed using the frequency count.
Definition : The frequency count is a count that denotes how many times particular
staternent is executed.
Consider following code for counting the frequency count

The frequency count of above program is 1.

forfi=0k<n;i+ +)
a = at+i;

printd("%d" a); }

The frequency count of above code is 2n+ 3

The for loop in above given fragment of code is executed n times when the condition
humuﬂmmmﬁnewhmﬂmcmdiﬂmbmmh]mﬂmmhﬂmfmhupﬂu
frequency count i= n+ |, The statement inside the for loop will be exccuted only when
the condition inside the for loop is true. Therefore this statement will be executed for n
times. The last pontf statement will be execubed for once.

EEETTEEEY Ottuin the frequency count for the follawing code,
OR

Lisfirg Step coum! methnd anmyze the thne complexily when foe m*ie surbrices are mdidad.

Fﬂhﬂn allll.int B
It c{3)(3):
for(i=0<mi+ +)

{
?l'ﬂﬂ!ﬂﬂd++]

}dlllﬂ-;llll'l'hﬂlli

Solution ;

Analysis and Design of Algonthvs 2.4 Analysis af Aigorthms

The frequency count = [m + 1) + min + 1)+ mn = 2m + 2mn + 1= 2mil + nk +1
EEEETERE) Obtain the frequency count for the following code.

Torfi=15<=n5+ +)
{
forfj =17 <=nj++)
{
efilijl=m;
forfk=1k==nk++]
;{ﬂm'ﬂilll'l'ﬂi][il'hﬂlﬂ:
} [Dec. 2012 |
Solution :
Frequency Counl
n+1l
ruin + 1)
nn)
nedn # 1)
LI
P LR R S

After counting the frequency count, the constant terms can be neglected and only the
order of magnitude & congidered. The tme complexity s denoted in ferms of
algorithmic notations. The Big oh notation s a most commonly used algorithemic
notation. For the above frequency count all the constant terms are neglected and only
the order of magnitude of the polynomial is considered. Hence the time complexity for
the above code can be Ofn®). The higher order is the polvnomial i= always considered.

After counting the frequency count, the constant terms can be neglected and only the
order of magnitude & considered. The time complexity is denoted im0 ferms of
algorithmic notations. The Big oh notation is a most commonly used algerithmic
notation. For the above frequency count all the constant lerms are neglected and only
the order of magnitude of the polynomial is considered. Hence the bme complexity for

the above code can be O(n”). The higher order is the polyvnomial is always considered.

EIITTEEE) Obtain the frequency count for the following code
i=1;

do

i

a++;
Hii==5]
Ereak;

i+ +;

Jwhiladi< =n)

17

18

Frequency Count

B o | |m o | | =

EIEITEEE) What is space complexity ? How algarithins can be analyzed in terms of space
complevity 7 Will it depend om bype of instance (irput) or will change 7
| GTU : Summer 14, Marks 4 |

Solution : The space complexity can be defined as amount of memory mequined by an
algorithim bo rurn.

Sp) = C+5p

where C is a constant ie. fixed part and it denotes the space of inputs and outputs.
This space is an amount of space taken by instruction, varables and identifiers, And Sp
is a space dependent upon instance characteristics. Thiz is a variable part whese space
requirement depends on particular problem instance. Thus space complexity s
dependant upon the type of inpuk.

Consider an example of algorithm fo compute the space complexity.

In the given code we require space for

Hence the space complexity of given algorithm can be denoted in lerms of big-oh
notation. It & Oink

Raview Question

1. Explain wiy awalysis of alporilhns is importaat 7 | GTU - Wimter-12, Marks 7 |

E¥1 Average and Worst Case Analysis (SIS MEEAIIToEY

If an algorithm takes minimum amount of Hme o run o completion for a specific

set of input then it 15 called best case fume complexity.

For example : While scarching a partioular element by using sequential search we

get the desired element at first place itself then it i called best case time complexity.

If an algorithm takes maximum amount of ime o run o completion for a specific

set of input then it is called worst case time complesity,

For example : While searching an element by using linear searching method if
desired element is placed at the end of the list then we gel worsl lime complexity.

The tirme complexity that we get for certain set of inpuats is as a average same. Then
for corresponding input such a time complexity is called average case time complexity.

Consider the following algorithm

Bast case timea complaxity

Best case time complesity is a fime complexity when an algorithm runs for short
tirre. In above searching algorithm the element key = searched from the lst of n
elements. 1f the key element is present at first location in the lList(X]0...n=1]) then
algorithm runs for a very short time and thereby we will get the best case time
complexity. We can demote the best case time complexity as

‘:bﬂ-l

20

Worst case time complexity

Worst case time complexity is a time complexity when algorithm runs for a longest
time. In above searching algorithm the element key is searched from the list of n
clements. If the key element is present at n'™ location then clearly the algorithm will run
for longest ime and thereby we will get the worst case time complexity. We can denote
the worst case time complexily as

Cuons = 0

The algorithm guarantees that for any instance of input which is of size n, the
running ime will not exceed C . (n). Hence the worsl case time complexity gives
important information about the efficiency of algorithm.
Average case time comploxity

This type of complexity gives information about the behaviour of an algorithm on
specific or random Input. Let us understand some terminologies that are required for
computing average case time complexity.

Let the algorithm is for sequential search and
P be a probability of getting successful search.
n s the total number of elements in the list

The first match of the clement will occur at i™ location. Hence probability of
occuering first mateh is P/n for every i element.

The probability of getting unsuccessful search is (1 =).
Now, we can find average case time complexity C,,.(n) as -
Caug () = Probability of successful search (for elements | to n in the list)
+ Probability of unsuccessful search

P P Pl
Cuvs(“) = [l';4 2-;‘-0 S l-;

sn(1-P)

-

There may be n
N+2+..3i. . .nl+n(1-P) elements at which

Caygn) S en(1-P)

Thus we can obtain the general formula for computing average case time complexity.

21

Suppose if P = 0 that means there i no successfull search e, we have scanmed the
entire list of n elerments and stll we do not found the desired element in the list then in
such a situation,

Cagin) = Bin+ 1)/2+n(1-0)

Cagin) = n
Thus the average case running lime complexity becomes equal bo n
Suppose if P =1 e we get a sucosssful search then

Cavgln) lin+1)/2+ni{l=1)

Cavglnd = (n+)72
That means the algorithm scans about half of the elements from the list.

For calculating average case firme complexity we have to consider probability of
getting success of the operation. And any operation in the algorithm @5 heavily
I:ll:'l:l:'l.'l.l:ll;!l'lt an inpul elements Thus mn]:lul:in.g average case hme :l,:m_pll:xi.l:_'r iz difficult
than computing worsl case and besl case ime complexities.

Review Quastions

1. Wihat @& i algorithet 7 Explain tirlows propertis of wa alporitirs. Loy QURR T TR PTIT]
2. Expliim ooy aveatysis of alporitioms & fwportant ¥ Explain werst mse, best s omd aoerage onse

Completity. [GTU : May-12. Marks 4 |

1. Dxploim @ Worst mse, best cese amd aaenage onse comvpleTify. GTU : Winder- 1E, Marks 7

m Elementary Operations

Elementary operations are those operations whose execution time s bounded by a
constant which depends upon the type of implementation used. The clementary
operations are addition, muoltiplication and assignment.

Let, for implementing an algorithm requires some elementary operations such as
addition, multiplication and assignment.

Litt,

a be the number of additions

b be the number of multiplications

¢ be the number of assigninenls

t1 b the total amount of time requined by addition operations

12 be the total amount of time required by multiplication operations
E3 be the total amount of Hme required by assignment operations

22

The testal firme required by the algorithm fo execute can be expressed as,
t=all + M2 + a3 o
ts max [t1, 12, B3| x [a + b + ¢]

Thus t is bounded by a constant multipke of time taken by elementary operations to
execute.

Example

In above algorithm the elementary operation is addition. If a machine of 32-bit words
is used to execute above algorithm, then all the additions can be executed directly
provided nowith noe greater tham 65535 Theoretically we consider that the additions costs
for m wnits,

Asymptotic Notations
ik May

To choose the best algorithm, we need to check efficiency of each algorithm. The
efficlency can be measured by computing tme complexily of each algorithm. Asymplotic
notation is a shorthand way o represent the time complexity.

Using asympiotic notations we can give Hme complesity as “fastest possible”,
“slowest possible” or "average Hme”.

Various netatioms such as £, @ and O used are called asympiodic notions.

EXXN Big oh Notation

The Big oh notation is denoted by 'O It i5 a method of representing the upper
bound of algorithm's running Hme, Using big oh notation we can give longest amount
of lime taken by the algorithm to complete.

Defindtion

Let fin) and gin) be two non-negative functions.
Let nyy and constant © are bwo integers such that ny denotes some value of input and
n > ng. Similarly ¢ is some constant such that ¢ > 0. We can write

finy s copin)

23

then fin) is big oh of gin). It is also denoted as H{n) € O (gn)). In other words fin) is
bess than gin) if gin) s multiple of some constant ¢

[
o= gind

fn)

.5-'""— S
=

finy = Ofgin)
Fig. 2.4.1

Example : Consider function fin) = 2n + 2 and gin) = n®. Then we have to find some
constant ¢, so that f{n) < ¢ * gin). As fin) = 2n + 2 and gin) = n? then we find ¢ for

n = | then,
fin} = 2ns+ 2
- 21 +2
finy = 4
and El:nb = n:
= (1)?
giny = 1
ie. fink = gin)
If n = 2 then,
fin) = 22) + 2
= b
gin} = (2)*
gin} = 4
i fin} = gin)
If n = 3 then,

fin} = 243) + 2

1]
@

24

ginp = (3
L]

Bln)
e finy = gin} ds e
Hence we can conclude that for n > 2, we oblain
fin} < gln)
Thus always upper bound of existing time is obtained by big oh notation.

FY¥] omega Notation

Chmega notation is denoted by "6, This notalion is used o represent the lower Bound
of algorithm's running fime. Lsing omega notation we can denote shortest amount of
time aken I_'.I_l.r ulg-urril:hm.

Deefinition

A functon fin) is said to be in 2 (gin)) if fin) is bounded below by some positive
constant multiple of gink such that
fin) = ¢*gin) For all n = ng

It is denobed as fin) € 2 (gin)). Following graph illestrates the corve fior £ motation,

L[]
&+ gin)
n, "
#ir) e Lh(gin)}
Fig. 2.4.2

Example :

Consider fin) = 2n° + 5 and gin) = 7n

Then o n =

fin) = 2(M* +5
= 5

25

